RESEARCH ARTICLE

Analysis of Work Stress, Work Conflicts and Workload on Employee Performance in the General Section of the Medan Mayor's Office

Ice Lediana Br Ginting¹, Darmilisani¹, Nashrudin Setiawan ¹

Published online: 25 September 2024

Abstract

This study aims to analyze the influence of work stress, work conflicts, and workload on employee performance in the General Section of the Medan Mayor's Office. The method used is an associative quantitative approach with the aim of testing the hypothesis that has been prepared. The population of this study consisted of all employees in the General Section of the Medan Mayor's Office, which amounted to 30 people, and the entire population was sampled. Primary data were collected through questionnaires measured using the Likert scale. The data collection method is carried out by observation and dissemination of questionnaires. The data obtained was analyzed using IBM SPSS 26 statistical software. The results of the study show that work stress, work conflict, and workload each have a significant effect on employee performance. In addition, simultaneously, work stress, work conflicts, and workload also have a significant effect on employee performance in the General Section of the Medan Mayor's Office.

Keyword: Work Stress, Work Conflict, Workload, Employee Performance.

Introduction

Productivity and work efficiency are top priorities for every organization. However, the complex challenges employees face, such as work stress, work conflicts, and workload, can have a significant impact on their performance and well-being.

Performance is the result of work that can be achieved by a person or group of people in a company in accordance with their respective authorities and responsibilities in an effort to achieve organizational goals legally, not violating the law and not contrary to morals and ethics (Prayetno & Darmilisani, 2024). Based on an initial survey of 15 employees, it was found that although the overall performance was good, there were several areas that needed special attention, such as the achievement of work targets, the ability to work under pressure, and teamwork.

Work stress is a state of tension that affects a person's thought process, emotions, and condition (Setiawan et al., 2019). As a result, excessive work stress can threaten a person's ability to deal with the environment and will ultimately interfere with the performance of their duties. Preliminary surveys show that the majority of employees of the General Section of the Medan Mayor's Office experience work pressure, anxiety, and physical and mental fatigue, which can negatively impact their performance. The results of the study by Imania et al. (2023) support these findings, showing that work stress has a significant negative impact on employee performance.

Work conflict is a condition where there are significant differences in the goals that individuals or groups in the organization want to achieve, thus causing tension and disputes (Widyaningrum, 2019). These conflicts can hinder the

majority of employees experienced conflicts in the form of disagreements and obstacles in completing tasks. Previous research by Ramadani et al. (2022) also found that work conflicts have a significant influence on employee performance, while Kurniati et al. (2022) did not find a significant relationship, suggesting the need for further research in this context.

Workload is the scope of the number of tasks, the difficulty level of the task, and the time available to complete the task

completion of work and affect the overall performance of

employees. The results of the initial survey showed that the

Workload is the scope of the number of tasks, the difficulty level of the task, and the time available to complete the task (Tarwaka, 2017). Excessive workload can lead to fatigue and decreased productivity, as revealed in Vanchapo's (2020) research. A preliminary survey of the General Section of the Medan Mayor's Office showed that most employees felt that their workload exceeded their capacity to handle, leading to the need for overtime and significant fatigue. The results of the research by Balqis and Sugiono (2020) show that high workloads can positively affect performance, but these findings are different from Indriyanto and Solovida (2020) which show that excessive workloads actually hinder performance.

Based on the findings of the pre-survey and observations, there are indications of a decline in employee performance caused by a lack of discipline, including low levels of attendance, tardiness, and absenteeism for no apparent reason. This phenomenon highlights the importance of further research to analyze the influence of work stress, work conflicts, and workload on employee performance in the General Section of the Medan Mayor's Office, in an effort to increase their productivity and welfare

Methods

Research Approach

The research approach refers to the perspective used by researchers in observing and analyzing the phenomena that are the object of study (Sugiyono, 2019). In this study, the researcher adopted an associative quantitative approach, in

Ice Lediana Br Ginting

Email: iceledianaginting@gmail.com.

¹Universitas Pembangunan Panca Budi .

^{*)} corresponding author

which numerical data was collected and analyzed statistically to test the relationship between the research variables.

Location and Time of Research

This research is located at the Medan Mayor's Office located on Jalan Kapten Maulana Lubis No.1, Petisah Tengah, Medan Petisah District, Medan City, North Sumatra 20111, Indonesia, with the implementation time starting from April 2024 to July 2024.

Population and Sample

Population is a generalization area that includes objects or subjects with certain characteristics determined by the researcher to be studied further (Sugiyono, 2019). In this study, the population includes all employees who work in the General Section of the Medan Mayor's Office, with a total of thirty (30) people. Given the relatively small number of population, this study uses the census method or saturated samples, where all members of the population are used as samples. This is done to ensure that all population characteristics are covered in the study, so that the results can reflect the actual conditions.

Operational Definitions and Variable Measurements

1) Performance

Performance is defined as the ability of employees to carry out the tasks assigned to them with clear and measurable standards, and reflects how far their skills are applied in the work (Yulianto, 2020). Performance measurement is carried out with five indicators that reflect key aspects of employee performance, namely: (1) Quality, (2) Quantity, (3) Punctuality, (4) Effectiveness and (5) Independence.

2) Work Stress

Work stress is a condition that arises as a result of the interaction between individuals and their jobs, which is characterized by a mismatch between individual characteristics and job demands as well as changes in the organization (Afandi, 2018). To measure work stress, five indicators are used as follows: (1) Task demands, (2) Role demands, (3) Interpersonal demands, (4) Organizational structure and (5) Organizational leadership.

3) Work Conflicts

Work conflict is a conflict that arises between individual expectations for work and the reality faced in the workplace (Mangkunegara, 2018). The measurement of work conflicts was carried out with six indicators that identified various forms of conflict in the workplace, namely: (1) Work coordination that was not carried out, (2) Dependency in carrying out tasks, (3) Differences in work orientation, (4) Ambiguity in the division of tasks, (5) Differences in understanding organizational goals and (6) Differences in perceptions.

4) Workload

Workload refers to the total work given to human resources that must be completed within a certain period of time (Koesomowidjojo, 2017). To measure the workload, three indicators are used that cover aspects related to the workload, namely: (1) Work conditions, (2) Use of work time and (3) Achievement targets.

Data Collection Techniques

In the process of collecting data for this study, the method used is a questionnaire. Questionnaires are an effective tool for collecting data through giving a series of questions or written statements to respondents, which they are then expected to answer (Sugiyono, 2019).

The questionnaire was distributed to employees of the General Section of the Medan Mayor's Office which became a

research sample in the form of a google form, then the results of the questionnaire were measured using a Likert scale.

Data Analysis Techniques

After the data was collected completely, the researcher continued the analysis process using IBM SPSS statistical software version 26. The software was chosen for its ability to perform comprehensive data processing, including descriptive, inferential, and other statistical techniques necessary to identify patterns, relationships, and conclusions from the data that has been collected.

Result and Discussion

Test Research Instruments

Testing of the research instrument is carried out to ensure that the measuring instrument used meets the criteria of validity and reliability. Valid and reliable instruments are very important in the data collection process because they can guarantee that the results of the study will have a high level of confidence and accuracy (Sugiyono, 2019).

Validity Test

Instrument validity is an important prerequisite in quantitative research. A valid instrument ensures that the conclusions drawn from the data analysis are reliable and generalize (Ghozali, 2018).

Work S	tress Variables
Table 1.	Validity Test Results
102a11, 2016).	

WOLK Stress Valiables				
Question	r	r Table(N = 30,	Information	
Item	Calculate	$\alpha = 0.05$)		
P1	0,638	0,361	Valid	
P2	0,801	0,361	Valid	
P3	0,886	0,361	Valid	
P4	0,509	0,361	Valid	
P5	0,737	0,361	Valid	
P6	0,655	0,361	Valid	
P7	0,816	0,361	Valid	
P8	0,573	0,361	Valid	
P9	0,511	0,361	Valid	
P10	0,553	0,361	Valid	
P11	0,507	0,361	Valid	
P12	0,542	0,361	Valid	
P14	0,838	0,361	Valid	
P14	0,711	0,361	Valid	
P15	0,731	0,361	Valid	

Work Conflict Variables

Question	r	r Table(N = 30,	Information			
Item	Calculate	$\alpha = 0.05$)				
P1	0,881	0,361	Valid			
P2	0,923	0,361	Valid			
P3	0,767	0,361	Valid			
P4	0,760	0,361	Valid			
P5	0,871	0,361	Valid			
P6	0,557	0,361	Valid			
P7	0,641	0,361	Valid			
P8	0,814	0,361	Valid			
P9	0,672	0,361	Valid			
P10	0,722	0,361	Valid			
P11	0,801	0,361	Valid			
P12	0,823	0,361	Valid			
P13	0,657	0,361	Valid			
P14	0,775	0,361	Valid			
P15	0,746	0,361	Valid			
Workload Variables						

Question	r	r Table(N = 30,	Information
Item	Calculate	$\alpha = 0.05$)	
P1	0,593	0,361	Valid
P2	0,468	0,361	Valid
Р3	0,484	0,361	Valid
P4	0,439	0,361	Valid
P5	0,630	0,361	Valid
P6	0,769	0,361	Valid
P7	0,694	0,361	Valid
P8	0,544	0,361	Valid
P9	0,658	0,361	Valid
P10	0,598	0,361	Valid
P11	0,807	0,361	Valid
P12	0,846	0,361	Valid
P14	0,705	0,361	Valid
P14	0,632	0,361	Valid

Performance Variables					
Question	r	r Table(N = 30,	Information		
Item	Calculate	$\alpha = 0.05$)			
P1	0,692	0,361	Valid		
P2	0,666	0,361	Valid		
Р3	0,642	0,361	Valid		
P4	0,523	0,361	Valid		
P5	0,812	0,361	Valid		
P6	0,530	0,361	Valid		
P7	0,596	0,361	Valid		
P8	0,588	0,361	Valid		
P9	0,679	0,361	Valid		
P10	0,595	0,361	Valid		
P11	0,643	0,361	Valid		
P12	0,508	0,361	Valid		
P14	0,675	0,361	Valid		
P14	0,423	0,361	Valid		
P15	0,522	0,361	Valid		
P16	0,772	0,361	Valid		
P17	0,602	0,361	Valid		
P18	0,554	0,361	Valid		

Source: SPSS 26 Output, Data Processed 2024

The r value of the table in this study was determined based on the *degree of freedom* for the two-tailed test with a significance level of 0.05. For a sample of thirty respondents, the r-value of the table obtained was 0.361. This value is used as a reference to determine the validity of the questionnaire items. An item is considered valid if the calculated r value is greater than the table's r value. Based on the results of the validity test presented in Table 4.1, all question items for the variables of Work Stress, Work Conflict, Workload, and Employee Performance showed a value of r calculation greater than r table (0.361). Thus, all items in this research instrument were declared valid, which indicates that the instrument used has adequate accuracy in measuring the variables studied.

Reality Test

Reliability testing is a statistical procedure used to measure the level of consistency and stability of a measurement instrument, such as a questionnaire, in producing the same score on repeated measurements (Ghozali, 2018).

	Table	Reality T	est Results
It	Variable	Cronbach's	Information
		Alpha	
1.	Work Stress	0,912	Reliable
	(x1)		
2.	Work Conflicts	0,948	Reliable
	(X2)		

3.	Workload (x3)	0,889	Reliable	
4.	Performance	0,898	Reliable	
	(Y)			

Source: SPSS 26 Output, Data Processed 2024

Reliability in this study was measured using *Cronbach's alpha*, where a value greater than 0.6 is considered qualified as a reliable instrument (Ghozali, 2018).

Based on the results of the reliability test presented in Table 2, all variables in this study were declared reliable, because the Cronbach's alpha value of each variable was greater than 0.6. This shows that the instrument used has met the reliability requirements and has high internal consistency. Thus, the measurement instrument can be relied on to produce stable and consistent data in the measurement of the variables studied.

Descriptive Statistical Test

Descriptive analysis is a type of analysis used to understand the general condition of data (Sugiyono, 2019).

Table 3.	Desc	criptiv	<u>re Statist</u>	tical Te	est Result
Variable	N N	1inimur	nMaximur	nMeanS	Std. Deviation
Work Stress	30	29	62	45.30	11.099
Work Conflicts	30	27	62	47.90	11.789
Workload	30	30	59	45.40	8.779
Employee Performan	ice30	50	90	69.63	8.988
Valid N (listwise)	30		•		

Source: SPSS 26 Output, Data Processed 2024

The results of the descriptive statistical analysis showed that the variable of work stress had significant variation among the respondents, where some employees experienced higher levels of stress than others. Work conflicts were also found to be a relevant issue, with a wide variety in the workplace, indicating a mismatch experienced by some employees. The workload showed a relatively uniform perception among respondents, with a more consistent distribution of data. The performance of employees shows considerable variation, with some individuals showing superior performance compared to others.

Classical Assumption Test

Classical assumption testing is used to ensure the reliability of the results of multiple linear regression analysis (Ghozali, 2018). These tests are important to ensure the validity and reliability of the regression model, as well as to avoid biased or inaccurate results.

Normality Test

The normality test is an important step in regression analysis to ensure that the residual data from the regression model follows the normal distribution. This is important because the assumption of residual normality is one of the classic assumptions in linear regression analysis, which, if met, will increase the validity of the model parameter estimation results (Sugiyono, 2019).

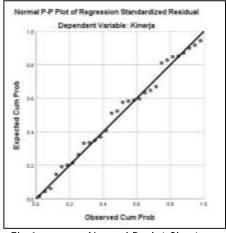


Fig 1. Normal P-plot Chart

Table 4. Kolmogorov-Smirnov One-Sample Test

Unstandardized Residual	
	30
Mean	.0000000
Std.	.02476773
Deviation	
Absolute	.090
Positive	.055
Negative	090
	.090
iiled)	.200c,d
	Mean Std. Deviation Absolute Positive Negative

Source: SPSS 26 Output, Data Processed 2024

Based on Figure 1, the normal graph of the P-Plot shows that the data points are scattered along a diagonal line, which signifies the fulfillment of the normality assumption. This distribution of data close to the diagonal line indicates that the residues in the regression model are normally distributed. In addition, the results of the normality test using *the Kolmogorov-Smirnov One-Sample*, as shown in Table 4, reinforce this finding with a significance value of 0.200. This value exceeded the threshold of 0.05 (0.200 > 0.05), which confirms that the data in this study are normally distributed.

Multicollinearity Test

The multicollinearity test aims to identify the existence of a linear relationship between independent variables in the regression model. If the *tolerance value* is more than 0.10 and *the Variance Inflation Factor* (VIF) is in the range of 1 to 10, then there is no multicollinearity problem (Ghozali, 2018).

	Table 5.	Multicollinea	rity Test Results
Tyl	pe	Collinearity Statistics	
		Tolerance	VIF
1	Stres_Kerja	.546	1.830
	Konflik_Kerja	.567	1.762
	Beban_Kerja	.488	2.051

a. Dependent Variable: Performance

Source: SPSS 26 Output, Data Processed 2024

Based on the SPSS output results presented in table 5, there is no indication of multicollinearity problems. The *tolerance value* for each variable is greater than 0.10, and the Variance *Inflation Factor* (VIF) value is in the range of 1 to 10.

Autocorrelation Test

The autocorrelation test aims to detect the correlation between the perturbrillator error in the t-period and the error in the t-1 period in a linear regression model (Ghozali, 2018). The ideal regression model has no autocorrelation. The Durbin-Watson Test (DW Test) is used to identify autocorrelation, provided that the regression model has a constant and no additional independent variables.

	Table	6. Aı	utocorrelat	ion Test Re	sults
Тур	R	R	Adjust	Std.	Durbi
e		Squa	ed R	Error	n-
		re	Square	of the	Watso
				Estima	n
				te	
1	.642	.412	.344	.02616	2.245
	9				

a. Predictors: (Constant), Workload, Work Conflict, Work Stress

b. Dependent Variable: Performance

Source: SPSS 26 Output, Data Processed 2024

The results of the Durbin-Watson test showed a value of 2,245. Based on the Durbin-Watson table for 30 respondents and 3 independent variables, the lower bound (dL) is 1.2138 and the upper bound (dU) is 1.6498. Since the Durbin-Watson value is in the range of dL to 4 - dU, which is 2.245, this regression model can be considered free of autocorrelation problems, making it valid for further data analysis.

Heteroscedasticity Test

The heteroscedasticity test aims to find out whether in the regression model there is a difference in the variant of the residual between one observation and another observation (Ghozali, 2018).

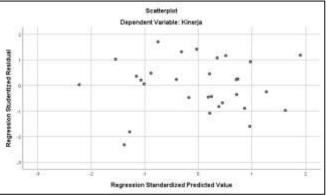


Fig 2. Scatterplot Chart Source: SPSS 26 Output, Data Processed 2024

Based on the test results in Figure 4.2, it can be concluded that there is no heteroscedasticity in the research data. The plot shows a random pattern of data distribution without concentration in a specific area. This indicates that the residual variance is constant, so the regression model used can be relied upon for further analysis.

Multiple Linear Regression Analysis

Multiple linear regression analysis is used to evaluate the influence of independent variables on dependent variables, allowing the review of changes in dependent variables (Ghozali, 2018).

Table 7. Multiple Linear Regression Analysis
Test Results

	Type	Unstandardized Coefficients		Standardized Coefficients
		В	Std. Error	Beta
1	(Constant)	1.634	.091	
	Work	.165	.060	.557
	Stress			
	Work	.116	.053	.437
	Conflicts			
	Workload	157	.076	445

a. Dependent Variable: Performance

Source: SPSS 26 Output, Data Processed 2024
Based on the results of the multiple linear regression test in table 4.8, the following equation is obtained:

Y = a + b1X1+b2X2+ b3X3+e Y = 1.634 + 0.165 + 0.116 - 0.157

Information:

- 1. Y is the performance of employees (dependent variable).
- 2. X1 is work stress (the first independent variable).
- 3. X2 is a work conflict (the second independent variable).
- 4. X3 is the workload (the third independent variable).
- 1634 is a constant or value of Y (employee performance) if X1 (work stress), X2 (work conflict) and X3 (workload) are zero.
- 6. 0.165, 0.116, and -0.157 are regression coefficients that indicate the change in the value of Y (employee performance) of each variable X₁ (work stress), X2 (work conflict) and X3 (work load) assuming that the other variables are fixed.

Test t

The partial t-test is used to evaluate the contribution of each independent variable in explaining the variation in the dependent variable individually (Ghozali, 2018).

 Table 8. Test Results

 Coefficientsa

 Type
 t
 Sig.

 (Constant)
 17.917
 .000

Work Stress	2.736	.011
Work Conflicts	2.190	.038
Workload	-2.065	.049

a. Dependent Variable: Performance

Source: SPSS 26 Output, Data Processed 2024

Based on the results of the t-test presented in Table 8, each independent variable is tested to determine its effect on the dependent variable, namely the performance of employees in the General Section of the Medan Mayor's Office. This test was carried out by comparing the calculated t value of each variable with the t-value of the table, and paying attention to the significance level of 0.05.

The t-value of the table is determined based on the degree of freedom (df) obtained from the number of samples (n) as many as 30 and the number of variables (k) as much as 3, so that df is 27. At a significance level of 0.05, the t-value of the table corresponding to df 27 is 1.703.

The following is a summary of the t-test results for each variable:

- Work Stress (H1): The calculated t-value of 2.736 exceeds the t-value of table 1.703, with a significance value of 0.011 which is less than 0.05. This indicates that work stress has a significant effect on employee performance (Ha accepted).
- Work Conflict (H2): The calculated t-value of 2.190 is greater than the t-table 1.703, with a significance value of 0.038 which is smaller than 0.05. Thus, work conflicts have a significant influence on employee performance (Ha accepted).
- 3. Workload (H3): The calculated t-value of -2.065 is also greater than the t-table 1.703, although it is marked negatively, and the significance value of 0.049 is slightly smaller than 0.05. This shows that the workload has a significant effect on employee performance (Ha accepted).

Test F

The F test is used to evaluate the feasibility of the regression model with the aim of determining whether independent variables simultaneously have a significant influence on the dependent variable (Ghozali, 2018).

-		Table 9.	Te	Test Results F			
ANOVA							
		Sum of		Mean			
	Type	Squares	Df	Square	F	Sig.	
1	Regression	.012	3	.004	6.072	.003b	
	Residual	.018	26	.001			
	Total	.030	29	•			
0 1 1 1 1 1 0 0							

a. Dependent Variable: Performance b. Predictors: (Constant), Workload, Work Conflict, Work Stress

Source: SPSS 26 Output, Data Processed 2024

Based on table 9, the F value is calculated as 6.072 with a significance value of 0.003. The degree of freedom is calculated using the formula df = n - k, where n is the number of samples (30) and k is the number of variables (3), so df = 27. The value of the F table on the degree of freedom is 2,960.

Conclusion:

- The value of the F count (6.072) is greater (>) than the F table
- The significance value (0.003) is smaller (<) than 0.05.

These results show that independent variables (work stress, work conflict and workload) simultaneously have a significant influence on the dependent variable, namely employee performance in the General Section of the Medan Mayor's Office.

Coefficient of Determination

The determination coefficient, or R-squared, is a statistical tool that measures the proportion of variation in dependent variables that can be explained by independent variables in regression models (Sugiyono, 2019). A higher R-squared value indicates that the regression model is better at explaining the variation of dependent variables based on independent variables.

Table 10. **Determination Coefficient Test Results** (R Square)

Model Summaryb								
Type	R	R	Adjusted R	Std. Error of the				
		Square	Square	Estimate				
1	.642a	.412	.344	.02616				

a. Predictors: (Constant), Workload, Work Conflict, Work Stress b. Dependent Variable: Performance

Source: SPSS 26 Output, Data Processed 2024

Based on Table 4.10, the R value of 0.642 indicates a fairly strong relationship between independent variables (workload, work conflict, work stress) and dependent variables (performance). An R Square value of 0.412 means that 41.2% of the variation in employee performance can be explained by independent variables in the model.

An adjusted R Square value of 0.344 shows that after considering the number of independent variables, about 34.4% of the variation in employee performance can still be explained by the model. This shows that the regression model is quite good at explaining employee performance variations, although 65.6% of the variations are influenced by other factors that are not included in the study.

Discussion

The Effect of Work Stress on Employee Performance

The results of the study show that work stress has a significant influence on employee performance in the General Section of the Medan Mayor's Office. The t-test produced a calculated t-value of 2.736, greater than the t-table of 1.703, with a significance value of 0.011 < 0.05. This indicates that increased work stress decreases employee performance

These findings are consistent with pre-survey results that show work stress as a significant problem among employees. Respondents reported stress due to overworkload, physical and mental fatigue, and stress-related health problems. These results are also in line with the research of Imania et al. (2023) which confirmed the effect of work stress on decreased performance. In contrast, Subchanifa et al. (2020) did not find a significant influence, suggesting that the impact of work stress can vary depending on the individual and their management

The Effect of Work Conflict on Employee Performance

This study found that work conflicts have a significant effect on employee performance in the General Section of the Medan Mayor's Office. The t-test showed a t-value of 2.190, exceeding the t-table of 1.703, with a significance value of 0.038 < 0.05, indicating that work conflicts decreased employee performance.

These results are supported by pre-surveys that show that work conflicts are common, with respondents reporting disputes, obstacles to work completion, and difficulties in communication. This finding is in line with Ramadani et al. (2022) who also found a significant impact of work conflicts on performance. However, these results are contrary to Kurniati et al. (2022) who did not find a significant influence, possibly due to differences in work environment or research methods.

The Effect of Workload on Employee Performance

The results of the study show that workload has a significant effect on employee performance in the General Section of the Medan Mayor's Office. The t-value of -2.065, although negative, is greater than the t-table 1.703, with a significance value of 0.049 < 0.05, indicating that the increased workload decreases employee performance. A negative sign indicates that the heavier the workload, the lower the performance is produced.

These results are consistent with pre-surveys that show that excessive workload negatively impacts employee performance and well-being. This finding is in line with Balqis and Sugiono (2020) who stated that workload significantly affects performance. In contrast, Indriyanto and Solovida (2020) found no effect, suggesting that work frequency can hinder performance because it causes feelings of helplessness.

Conclusion

Through a comprehensive data processing and discussion process, this study produces the following conclusions.

- Work stress has a significant effect on employee performance in the general part of the Medan Mayor's Office. The findings show that increased work stress contributes to a decline in employee performance.
- Work conflicts have a significant effect on employee performance in the general part of the Medan Mayor's Office. Conflicts that occur in the form of disagreements and obstacles in completing work interfere with employee performance.
- 3. Workload has a significant effect on employee performance in the general part of the Medan Mayor's Office. This study shows that excessive workload can lead to fatigue and decreased performance. This confirms the need for effective workload management to prevent a decrease in productivity.
- 4. Together, work stress, work conflicts, and workload have a significant effect on employee performance in the general part of the Medan Mayor's Office. These three variables affect employee performance simultaneously, emphasizing that effective management of these three factors is essential to maximize employee productivity and well-being.
- 5. Based on *the adjusted R square value*, the independent variable in this study explains around 34.4% variation in employee performance in the general part of the Medan Mayor's Office. This shows that the regression model used is quite good in explaining the influence of independent variables on employee performance. However, there was still 65.6% variation in performance that was influenced by other factors that were not included in the study.

Based on the results of this study, here are some suggestions that can be given:

For the Office of the Mayor of Medan

- It is recommended that the Medan Mayor's Office implement effective stress management programs, such as stress management training, counseling, and the provision of mental health facilities. This is important to reduce the negative impact of stress on employee performance.
- 2. There needs to be a clear and structured conflict resolution mechanism to handle disputes in the workplace. Conducting effective communication and mediation training can help resolve conflicts constructively.
- 3. The Medan Mayor's Office needs to evaluate and arrange the workload so that it is more balanced. Creating a realistic work schedule and providing additional support when needed can help reduce burnout and improve performance.

For Panca Budi Medan Development University

- Integration of Research in the Curriculum
 Universities can include the results of this research in the
 curriculum of related study programs, such as Human
 Resource Management and Industrial Psychology, to
 provide practical insights to students regarding the
 management of work stress, conflict, and workload.
- Collaboration with Practitioners
 Holding seminars, workshops, or guest lectures with
 practitioners to discuss the application of research results
 in real practice can provide additional benefits for
 students.

For the next researcher

Advanced Research

- Researchers are further advised to explore other factors that may affect employee performance that have not been covered in this study. Further research can include variables such as social support, job satisfaction, or work environment factors.
 - Intervening or Moderation Variables
- Adding intervening or moderation variables in the research model can provide deeper insights into the mechanism of the relationship between work stress, work

conflict, workload, and employee performance. Such as examining the role of job satisfaction as an intervening variable or motivational factor as a moderation variable can enrich an understanding of the existing dynamics.

References

- Afandi. (2018). Manajemen Sumber Daya Manusia (Teori, Konsep dan Indikator). Yogyakarta: Nusa Media.
- Balqis, F., & Sugiono, E. (2020). Pengaruh Beban Kerja, Penilaian Prestasi Kerja, Dan Pengembangan Karier Terhadap Kinerja Karyawan Pt Surya Progard Jakarta Selatan. Oikonomia: Jurnal Manajemen, 16(1).
- Ghozali, I. (2018). Aplikasi Analisis Multivariete Dengan Program IBM SPSS 25. Semarang: Badan Penerbit Universitas Diponegoro.
- Imania, A. P. Č., Hidayati, N., & Athia, I. (2023). Pengaruh Konflik dan Stres Kerja Terhadap Kinerja Karyawan Rumah Sakit "X" di Kabupaten Malang. E-JRM: Elektronik Jurnal Riset Manajemen, 12(02).
- Indriyanto, D., & Solovida, G. T. (2019). Pengaruh Beban Kerja dan Lingkungan Kerja Terhadap Kinerja Pegawai melalui Burnout sebagai Variabel Intervening (Studi Kasus pada Pegawai KCP Bank Jateng di Kabupaten Pemalang). MADIC.
- Koesomowidjojo, S. R. M. (2017). Analisis Beban Kerja. Jakarta: Penebar Swadaya Group.
- Kurniati, H., Rinaldo, J., & Yanti, N. (2022). Pengaruh stres kerja dan konflik kerja terhadap kinerja karyawan dengan kepuasan kerja sebagai variabel intervening pada puskesmas Salido kabupaten Pesisir Selatan. Matua Jurnal, 4(2), 397-414.
- Mangkunegara, A. A. A. P. (2018). Manajemen Sumber Daya Manusia. Bandung: Remaja Rosdakarya.
- Prayetno, H., & Darmilisani, D. (2024). Analisis Kemampuan Kerja dan Kompensasi Terhadap Kinerja Pegawai PT. PLN (Persero) ULP Medan Denai Dengan Motivasi Sebagai Variabel Intervening. Jurnal Media Wahana Ekonomika, 21(1), 46-57.
- Ramadani, R. H., Rizal, S., & Mustofa, A. (2022). Pengaruh Konflik Kerja dan Gaya Kepemimpinan Terhadap Kinerja Karyawan Di Hotel The Acacia Jakarta Selama Pandemi Covid-19. Ekonomi dan Bisnis, 1-10.
- Setiawan, N., Ferine, K. F., & Rahayu, S. (2019). Analisis Pengaruh Faktor Lingkungan Fisik dan Non Fisik terhadap Stres Kerja Dimana Komitmen Kerja sebagai Variabel Intervening pada Kantor Pelayanan Pajak Pratama Medan Kota. Jurnal Manajemen Tools, 11(1), 165-174.
- Subchanifa, D. P. V., Surepno, S., & Istiqomah, N. (2020). Stres Kerja, Kompetensi, Kompensasi dan Pengaruhnya Terhadap Kinerja Karyawan dengan Motivasi Sebagai Variabel Intervening. MALIA: Journal of Islamic Banking and Finance, 4(2), 136–147.
- Sugiyono. (2019). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.
- Tarwaka. (2017). Keselamatan dan Kesehatan Kerja Manajemen dan Implementasi K3 di Tempat Kerja. Surakarta: Harapan Press
- Vanchapo, A. R. (2020). Beban Kerja dan Stres Kerja (1 ed.). Pasuruan: CV. Penerbit Qiara Media.
- Widyaningrum, M. E. (2019). Manajemen Sumber Daya Manusia (Vol. 1). Surabaya: UBHARA Manajemen Press.
- Yulianto, B. (2020). Perilaku Pengguna APD Sebagai Alternatif Meningkatkan Kinerja Karyawan Yang Terpapar Bising Intensitas Tinggi. Surabaya: Scopindo Media Pustaka